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Abstract. Numerical studies of the Anderson transition are based on the finite-size scaling
analysis of the smallest positive Lyapunov exponent. We prove numerically that the same scaling
holds also for higher Lyapunov exponents. This supports the one-parameter scaling theory of
localization. We found the critical disorder 16.50 � Wc � 16.53 and the critical exponent
1.50 � ν � 1.54 from numerical data for quasi-one-dimensional systems up to the system size
242 × ∞. The finite-size effects and the role of irrelevant scaling parameters are discussed.

Our contemporary understanding of the disorder-induced metal–insulator transition (MIT) is
based on the scaling theory of localization [1]. It is believed that MIT is universal, independent
on microscopic details of the model, and that its complete description requires only one relevant
parameter, e.g. the conductance g of the system.

In spite of its success and elegance, the one-parametric scaling theory still requires
thorough verification. The main problem is the absence of self-averaging of the conductance
in a neighbourhood of the critical point [2, 3]. A complete scaling analysis requires therefore
knowledge of the system-size dependence of the whole conductance distribution [4–6]. As no
remarkable progress has been achieved in solving this problem yet, the existence of another
relevant scaling parameter(s) can be neither confirmed nor excluded.

To avoid statistical fluctuations, numerical analysis of MIT concentrates on the quasi-one-
dimensional (Q1D) systems. Here, the scaling behaviour of the smallest positive Lyapunov
exponent (LE) z1† was proposed as

z1(L,W) = f (L/ξ(W)) (1)

in [7] and proven numerically in [8]. In (1), W is the disorder, L defines the width of the Q1D
system L×L×Lz and ξ(W) is the universal scaling parameter. In Q1D geometry, we define
Lyapunov exponents zi by the eigenvalues ti of the transfer matrix T as zi = 2 L

Lz
log ti . This

definition of LEs differs from the standard one by the multiplicative factor 2Lwhich guarantees
that zs are functions of only one parameter. In the limit Lz >> L, all zs are self-averaged
quantities [9]. The scaling parameter ξ(W) diverges as (Wc − W)−s for W → W−

z and as
(W − Wc)

−ν for W → W +
c . Here, s and ν are critical exponents for the conductance and the

localization length, respectively [10]. For the three-dimensional systems, s = ν [11].

† Instead of z1, the inverse quantity � = 2/z1 is commonly used. The present discussion is identical for both
quantities, but z’s are more natural variables for our purposes.
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The finite-size scaling (FSS) analysis of the numerical data for z1(L,W) enables us to
determine the critical disorderWc and the critical exponents [8,10,12–15]. In [8], the estimation
of the critical parameters for the Anderson model with the box distribution of random energies
were found to beWc ≈ 16.5±0.5 and s = ν ≈ 1.5±0.1. These results were later confirmed by
the more accurate numerical studies [12,13], and also by the analysis of the level statistics [16].
The calculations performed for different microscopic models confirmed the universality of the
exponent ν within a given universality class [14].

In this Letter we test the one-parametric scaling theory by the analysis of the scaling
behaviour of higher LEs. We present numerical data for LEs z2, z3, . . . z9 and prove
numerically that they follow the same scaling behaviour as z1 in the Q1D systems. This
proves that the lower part of the spectra of the transfer matrix in the Q1D limit is determined
only by one scaling parameter. The collected numerical data also provides us with a very
accurate estimation of the critical disorder Wc and the critical exponent ν. It is the first time
that numerical data for system size L > 16 have been calculated and analysed. Our data for
large L enable us also to check the finite-size corrections to the scaling proposed in [13].

The scaling behaviour of higher LEe has already been studied by Henneke in his PhD
thesis [15]. Owing to insufficient accuracy of his data, no acceptable proof of the common
scaling was found. More is known about the spectrum of LE. The linear dependence, zi ∼ i,
is well known in the metallic regime; it was used in [8] to explain the physical meaning of
the scaling parameter ξ(W). Although the spectrum of LE is no more linear for stronger
disorder [17], numerical data indicate that the ith LE, zi , is still a simple function of index i. In
particular, relation z2

i ∼ i was found at the critical point in 3D systems [18] and generalized to
the neighbourhood of the critical point [19,20]. In the localized regime, zs follow the relation
zi(W,L) = z1(W,L) + �i , where �i depend neither on disorder W nor on the system size
L [19].

To find the relation between zs (calculated numerically for very long Q1D models) and
transport properties of real physical systems, the Lz dependences of all LEs were studied [21].
It was shown that although zi itself depends on Lz, the qualitative form of the spectrum of
LEs is the same for cubes and for bars. Of course, the statistical properties of the zs become
important for Lz comparable to L. In the weak-disorder limit, the statistics of zs is understood
and described by random-matrix theory (RMT) [22].

For Q1D systems L2 × Lz we calculated all LEs for 21 different values of disorder
W = 16.00, 16.05, 16.10, 16.15, . . . , 16.95, 17.00. L increases from L = 4 up to 24. The
relative accuracy ε1 = √

varz1/z1 of the smallest z1(W,L), was 0.05% for L � 12, 0.5% for
L = 16, 18 and 1% for L = 21, 22 and 24. The accuracy of the higher LE is much better; in
particular, ε2 ≈ ε1/2 and ε9 ≈ 0.17ε1 for each system size.

The interval of the disorder is narrow enough to approximate the W dependence of the zs
by the linear fit

zj (W,L) = z
(0)
j (L) + Wz

(1)
j (L) j = 1, 2, . . . . (2)

The higher-order corrections to the linear fit (2) are negligible. Even in systems with L > 18
they do not exceed the numerical inaccuracy of the raw data. The typical W dependence of
our data is presented in figure 1 for z2.

Scaling theory provides us with the expansion of zj in the neighbourhood of the critical
point [23]

zj (W,L) ≈ zjc + A × (W − Wc) × Lα α = 1/ν. (3)

Thanks to the linear W dependence of the zs (figure 1), we can neglect all higher order terms
in the expansion (3). The comparison of (2) and (3) offers the simplest way to estimate the
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Figure 1. The W dependence of the second LE, z2, for different system size.

critical exponent α. In figure 2 we present the L dependence of z(1)j for the first six LEs and
for z9. It confirms that close to the critical point these LEs scale with the same exponent α:

α ≈ 0.655 ± 0.010 (4)

which determines ν = 1.526 ± 0.023. This estimation is in a very good agreement with
the result of MacKinnon [12] and differs slightly from [4, 13] (see table 1). A more detailed
method of the estimation of α will be discussed below.

Table 1. Critical disorder Wc and critical exponent ν as found from numerical data for the j th
LE for the three-parametric (3) and two-parametric (8) fits (∗) and their comparison with results of
other authors. The number of analysed points is ∼ 21 × (Lmax − Lmin). The minimum of F was
found to be � 1.05 for all analysed sets (with exception of z3, where it was 1.09).

j Lmin Lmax Wc zjc α ν β

1 4–5 24 16.515 3.46 0.644 1.55 −3.5
1∗ 8–12 20–24 16.505 (10) 3.451 (07) 0.681 (15) 1.470 (30) —
2 5–10 24 16.527 (02) 5.588 (02) 0.654 (08) 1.529 (18) −3.2 (6)
2∗ 10–12 22–24 16.500 (07) 5.500 (07) 0.659 (05) 1.517 (11) —
3 9 24 16.508 7.167 0.647 1.545 −6.0
4 8–10 24 16.504 (02) 8.422 (05) 0.663 (04) 1.509 (9) −3.7 (2)
5 9–12 24 16.517 (16) 9.560 (30) 0.661 (06) 1.513 (14) −3.3 (8)

1 [12] 4 12 16.500 (50) 1.515 (33)
1 [13] 6 12 16.448 (14) 1.59 (3)
1 [4] 4 14 16.540 (10) 1.57 (2) −2.8 (5)
1∗ [4] 8 14 16.514 (07) 1.58 (5) —

Figures 1 and 2 show also the important influence of the finite-size effects (FSE) in the
present analysis. We see that the small-L data are of no use in the analysis of higher LEs. We
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Figure 2. The L dependence of z(1)j for the first six LEs and for z9 (counted from below). The
slope determines critical exponents as α = 1/ν. Inset: values of 1/ν found from presented fits.

found that the numerical data for zj could be used only when

L > zj . (5)

This is easy to understand. If zj > L then the j th channel is rather ‘localized’ than critical
on this length scale. Therefore only a small part of the spectrum which fulfils relation (5)
follows the scaling behaviour. The rest of the spectrum depends on L even at the critical
point. This conclusion is supported also by analysis of the density ρ(z) of all LEs for cubic
samples [24]. At the critical point, the number of system-size independent LEs grows as ∼ L

when L → ∞ [20]. As z1 ≈ 3.4, the above-mentioned effect does not influence the analysis
of the first LE, z1. Nevertheless, other FSE must be taken into account in the scaling analysis
of z1 [13, 25].

A more reliable estimation of the exponent α (4) and of the critical disorder Wc is given
by the position of the minimum of the function

F(Wc, α, . . .) = 1

N

∑

W,L

1

σ 2
j (W,L)

[
zj (W,L) − zfit

j (W,L)
]2
. (6)

In (6), N = ∑
W,L is the number of points, and . . . stands for all other fitting parameters.

The natural choice of the fitting function zfit
j in (6) is the RHS of equation (2). None of the

FSE are explicitly included in (2). Nevertheless, it still enables us to test the sensitivity of the
critical parameters to the size of the analysed systems. To do so, we considered different sets
of input data zj (L,W) with the restriction Lmin � L � Lmax (Lmin � 12). Then, the Lmin-
and Lmax- dependences of Wc and α were analysed. While the influence of the choice of Lmax

is, as supposed, negligible, both Wc and zjc increase with Lmin. We found Lmin - independent
results only for the two smallest LEs, z1 and z2. For the higher LEs, critical parameters do not
reach their limiting values even for Lmin = 12. The estimation of the critical exponent α does
not depend on the choice of interval of L. The obtained data are in good agreement with the
estimation (4) for all LEs under consideration.
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The weak Lmin sensitivity of the critical exponent agrees with the assumption that FSE
influence primarily the W -independent part of zj [12]. Figure 1 offers a simple interpretation
of this result: to eliminate FSE one has to shift each line by the disorder-independent constant
B(L) which should be added to the RHS of (2). The proper choice of B(L) assures that all
lines cross at the same point as it is proposed by the scaling theory. Finite-size corrections to
the line slope are only of ‘higher order’.

Slevin and Ohtsuki [13] fitted z1(W,L) (resp. its inverse z−1
1 ) to the more general function

zfit
1 (L,W) = zjc +

Nx∑

n=0

Ny∑

m=0

Anmx
nym (7)

with Nx = 3, Ny = 1. In (7), x = (w + b1w
2 + b2w

3)Lα , w = W − Wc and y = Lβ with
β < 0. Exponent β represents the second critical (irrelevant) scaling exponent. We fit our
data to function (7) with b1 = b2 = 0 and n + m � 1:

zfit
j (L,W) = zjc + A × (W − Wc)L

α + BLβ. (8)

More sophisticated fits do not provide us with any reasonable improvement of the accuracy of
the critical parameters.

To test the quality of the fit (8), we again studied the sensitivity of our results to a change
of the input data. Evidently, for Lmin large enough the role of the irrelevant scaling exponent
is negligible. The finite-size effects become small and difficult to measure. The value of the
irrelevant critical exponent β obtained from the fitting function (8) decreases to ∼ −20 for
large Lmin.

For small values of Lmin, however, the three-parametric fit (8) still does not provide us
with the Lmin-independent estimation of the critical parameters. We therefore averaged the
values of Wc and α obtained from various choices of Lmin.

Table 1 presents our results for the first five LEs obtained from fits (2) and (8). On the
basis of the presented data we estimate

16.50 � Wc � 16.53 and 1.50 � ν � 1.54. (9)

These values are in a very good agreement with [12].
Our results (9) differ from those obtained by the many-parametric fitting procedure in [13]

(table 1.). None of the analysed statistical ensemble provides us with such a high value
of ν. This discrepancy is probably caused by different input data. Contrary to previous
treatments [12, 13], we collected data for large system size in order to simplify the fitting
function. The main disadvantage of this strategy is lower accuracy of our data for z1. On the
other hand, the fact that the results obtained from the many-parametric fitting procedure depend
on Lmin indicates that the fitting function (8) is still insufficient to reflect the corrections to
scaling completely. The only way to obtain more accurate estimation of the critical parameters
is to collect more exact numerical data for large system size.

To conclude, we have collected numerical data for the quasi-one-dimensional Anderson
model up to system size L = 24. Our data prove that higher Lyapunov exponents of the
transfer matrix follow the one-parametric scaling law. The critical exponent ν coincides with
that calculated from the scaling treatment of the smallest LE. The scaling holds only for
Lyapunov exponents which are smaller than the system size considered.

The common scaling enables us to express all relevant LEs as a unambiguous function
of the first one. Evidently, the same holds also for any function of the zs. This indicates the
validity of the one-parameter scaling theory.

We show for the first time, that the numerical data for the higher LEs could be used for
calculation of the critical parameters of the metal–insulator transition. The numerical accuracy
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of higher LEs is much better than that of z1. The price we pay for it is a stronger influence of
the finite-size effects which means that the data obtained for small system size cannot be used
for the scaling analysis. The best compromise between the accuracy and FSE offer data for
the second LE z2. We have discussed methods of eliminating the finite-size effects and have
estimated the critical disorder and the critical exponent ν by relation (9).

This work has been supported by Slovak Grant Agency, grant 2/4109/98. Numerical data have
been partially collected using the computer Origin 2000 in the Computer Center of the Slovak
Academy of Sciences.
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